Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (293 KB)

Title: Hydrologic cycling of mercury and organic carbon in a forested upland-bog watershed

Author: Kolka, R. K.; Grigal, D. F.; Nater, E. A.; Verry, E. S.;

Date: 2001

Source: Soil Science Society of America journal. Vol. 65, no. 3 (May/June 2001).:p. 897-905.

Publication Series: Scientific Journal (JRNL)

Description: The hydrologic cyvling of total Hg (HgT) and organic C (OC) was studies for a 1-yr period in a northern Minnesota forested watershed, consisting of an upland surrounding a bog peatland with a narrow lagg at their interface. Throughfall and sternflow contributed twice as much HgT as seven times as much OC to the forested watershed than atmospheric deposition in a nearby opening. Fluxes in upland runoff accounted for 16% of the HgT and 8% of the OC inputs to the lagg and were dominated by interflow transport. Bog runoff accounted for 57% of the HgT and 83% of the OC inputs to the lagg. For an annual cycle, upland soils were sinks for both HgT and OC, while bog soils were sinks for HgT but sources of OC. Fluxes to the lagg accounted for 184% of the HgT and 87% of the OC transported from the watershed outlet. We speculate that HgT was lost in the lagg by both volatilization and soil accumulation. Total Hg and dissolved organic C (DOC) are positively related in both throughfall and stemflow, with stemflow showing the strongest relationships. In the soil system, HgT-DOC relationships deteriorate and HgT-particulate organic C (POC) relationships dominate. Water residence time in contact with OC appears to be important in determining the relationships between HgT and OC. At the stream outlet, our data suggest that ~70% of the HgT transported from the watershed is associated with POC, while 30% is associated with DOC.

Keywords: Watersheds, Upland soils, Bog soils, Catchment hydrology, Nutrient transport, Runoff, Mercury, Organic carbon, Throughfall, Stemflow, Climate, Stream flow, Minnesota, Marcell Experimental Forest (Minn.), Peatland Hydrologic Impact Model (PHIM)

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Kolka, R. K.; Grigal, D. F.; Nater, E. A.; Verry, E. S. 2001. Hydrologic cycling of mercury and organic carbon in a forested upland-bog watershed. Soil Science Society of America journal. Vol. 65, no. 3 (May/June 2001).:p. 897-905.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.