Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (168 KB)

Title: Sustainable management of wildlife habitat and risk of extinction

Author: Smith, Winston P.; Zollner, Patrick A.;

Date: 2005

Source: Biological Conservation 125 (2005) 287?295

Publication Series: Scientific Journal (JRNL)

Description: Whether land management planning provides for sufficient habitat to sustain viable populations of indigenous wildlife is one of the greatest challenges confronting resource managers. Analyses of the effects of land management on natural resources often rely on qualitative assessments that focus on single species to reflect the risk of wildlife extinction across a planning area. We propose a conceptual framework for sustainable management of wildlife habitat that explicitly acknowledges the greater risk of an extinction event when considering the viability of multiple species, e.g., an indigenous vertebrate fauna. This concept is based on the principle that the likelihood of at least one event (i.e., species extinction) is the joint probability of the extinction probabilities of individual species, assuming independence among species` responses to disturbance. We present an ecological rationale to support the view that, at a spatial scale of 104-106 ha (i.e., planning area) and a temporal scale of 102 years (i.e., planning horizon), wildlife species operating at varying ecological scales respond relatively independently to disturbances typically associated with land management. We use a hypothetical scenario of a wildlife viability assessment and Monte Carlo simulation to demonstrate that the probability of `any extinction` is consistently higher than the probability of the `single most likely` extinction, and that the difference between these values increases as more disturbance-sensitive species (i.e., species at risk) are analyzed. We conclude that risk assessments that rely upon the most sensitive single species may substantially underestimate the risk of wildlife extinction across a planning area. Furthermore, the selection of a planning alternative based on relative threat of local extinction of wildlife populations can vary depending on which paradigm is used to estimate risk to viability across the planning area.

Keywords: Biological diversity, conservation assessments, effects analyses, habitat management, land-use planning, population viability, risk to extinction, sensitive species, sustainable use

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Smith, Winston P.; Zollner, Patrick A. 2005. Sustainable management of wildlife habitat and risk of extinction. Biological Conservation 125 (2005) 287?295

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.