Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (383 KB bytes)

Title: Modeling the conformation of polyphenols and their complexation with polypeptides: self-association of catechin and its complexation with L-proline glycine oligomers.

Author: Tobiason, Fred L.; Hemingway, Richard W.; Vergoten, Gerard.;

Date: 1999

Source: In: Gross, Georg G.; Hemingway, Richard W.; Yoshida, Takashi, eds. Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. New York: Kluwer Academic/Plenum Publishers: 527-544.

Publication Series: Miscellaneous Publication

Description: Over the past 10 years, several scientific thrusts have come together in the study of flavanoids that make it possible to move forward into the study of complexation between polyphenols and polypeptides. Enhanced understanding of the conformational properties of flavanoid monomers and polyflavanoids through molecular modeling, combined with the detailed NMR experimental data now in the literature, provide the foundation. Recent work using conformational searching techniques with the GMMX protocol has shown additional detail about the distribution of pseudo equatorial and pseudo low-energy axial conformers in the ensemble, as shown in figure 1. This leads to information about the relationship between the conformer ensemble and the Boltzmann averaged NMR proton coupling constants that one would expect to observe in a solution. Figure 1 also illustrates the pseudo equatorial to axial transformation that takes place in all catechin or (+)-catechin-(4 a ? 8)-(+)-catechin (B3) dimer complexes during the conformer searches and which would also be expected to occur in solution. Interest continues to further understand the details about this conformer distribution, as well as in the prediction of complexation of tannins with metal ions and proteins. Although the GMMX software has given many interesting results, it is limited in handling cases that require systematic conformational searching of molecules combined in a complex. In addition, there are no solvent model options.

Recent NMR studies on procyanidin dimers and NOE results of the complexation of L-proline-glycine compounds with (+)-catechin and polyflavanoid dimers have given data to help guide computational studies. Couple this with the improved molecular computational software available, and it becomes possible to explore complexation searching conformational space through Monte Carlo and molecular dynamics protocols using water as a solvent. The importance of this is highlighted by the renewed interest in its pharmacological characteristics such as the antiviral and antitumor behavior of tannins and other polyphenols, as well as reported interaction of polyphenols with proteins in aqueous solutions. In this chapter, the authors explore computational models for molecules such as L-proline-glycine and glycl-L-prolyl-glycl-glycine ion (GPGG ion) interacting with (+)-catechin and (+)-catechin-(4 a ? 8)-(+)-catechin (B3) to form complexes. These results are compared to the close-contact positions obtained from NOE NMR experiments in aqueous solution. The complex structures found using conformational search methods are discussed in terms of the specific hydrophobic and hydrophilic interactions observed.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Tobiason, Fred L.; Hemingway, Richard W.; Vergoten, Gerard. 1999. Modeling the conformation of polyphenols and their complexation with polypeptides: self-association of catechin and its complexation with L-proline glycine oligomers. In: Gross, Georg G.; Hemingway, Richard W.; Yoshida, Takashi, eds. Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. New York: Kluwer Academic/Plenum Publishers: 527-544.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.