Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.9 MB)

Title: Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data

Author: Xiao, Xiangming; Zhang, Qingyuan; Hollinger, David; Aber, John; Moore, Berrien, III III;

Date: 2005

Source: Ecological Applications 15(3):954-969

Publication Series: Scientific Journal (JRNL)

Description: Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (GPP) of forests is affected by FAPARPAV. In this study we developed and validated a satellite-based vegetation photosynthesis model (VPM; GPP = εg X FAPAPPAV X PAR) that incorporates improved vegetation indices derived from the moderate resolution imaging spectroradimeter (MODIS) sensor. Site-specific data from the CO2 flux tower site (evergreen needleleaf forest) at Howland, Maine, USA, were used. The enhanced vegetation index (EVI) better correlated with the seasonal dynamics of GPP than did the normalized difference vegetation index (NDVI). Simulations of the VPM model were conducted, using both daily and eight-day composites of MODIS images (500-m spatial resolution) and climate data (air temperature and PAR), respectively. Predicted GPP values in 2001 agree reasonably well with estimated GPP from the CO2 flux tower site. There were no significant differences in VPM-predicted GPP (from eight-day MODIS composites) among one pixel (~500-m resolution), 3 X 3 pixel block (~ 1.5-km resolution), and 5 X 5 pixel block (~ 2.5-km resolution). The differences between VPM-predicted and observed GPP were smaller for simulations using eight-day MODIS composites than for simulations using daily MODIS images. The results of this study have shown the potential of MODIS data (both daily and eight-day composites) and the VPM model for quantifying seasonal and interannual variations of GPP of evergreen needleleaf forests.

Keywords: CO2 flux, Howland forest (Maine, USA), vegetation photosynthesis model

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Xiao, Xiangming; Zhang, Qingyuan; Hollinger, David; Aber, John; Moore, Berrien, III 2005. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecological Applications 15(3):954-969

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.