Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (564 KB bytes)

Title: Labeling Defects in CT Images of Hardwood Logs with Species-Dependent and Species-Independent Classifiers

Author: Li, Pei; He, Jing; Abbott, A. Lynn; Schmoldt, Daniel L.;

Date: 1996

Source: Proceedings, IAPR TC-8 Workshop on Machine Perception Applications. 113-126.

Publication Series: Miscellaneous Publication

Description: This paper analyses computed tomography (CT) images of hardwood logs, with the goal of locating internal defects. The ability to detect and identify defects automatically is a critical component of efficiency improvements for future sawmills and veneer mills. This paper describes an approach in which 1) histogram equalization is used during preprocessing to normalize pixel values; 2) a feed-forward neural network assigns tentative labels to individual image pixels; and 3) a morphological post-processing step removes noise and refines image regions. The normalization step facilitates the classification of wood features across different logs and different species. The neural network assigns tentative labels using normalized pixel values from small three-dimensional (3D) neighborhoods. We demonstrates the utility of this approach when the the network is trained using a single species of wood. This paper also considers the effect of training the network with samples from more than one species. Because small neighborhoods are used in either case, the classifier can be made to operate at real-time rates. Tests of the method using ten-fold cross-validation and CT images from three different logs resulted in a classification accuracy of approximately 95%.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Li, Pei; He, Jing; Abbott, A. Lynn; Schmoldt, Daniel L. 1996. Labeling Defects in CT Images of Hardwood Logs with Species-Dependent and Species-Independent Classifiers. Proceedings, IAPR TC-8 Workshop on Machine Perception Applications. 113-126.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.