Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (69 KB)

Title: Physiological changes in red spruce seedlings during a simulated winter thaw

Author: Schaberg, P.G.; Shane, J.B.; Hawley, G.J.; Strimbeck, G.R.; DeHayes, D.H.; Cali, P.F.; Donnelly, J.R.;

Date: 1996

Source: Tree Physiology. 16: 567-574.

Publication Series: Scientific Journal (JRNL)

Description: We evaluated net photosynthesis, respiration, leaf conductance, xylem pressure potential (XPP) and cold hardiness in red spruce (Picea rubens Sarg.) seedlings exposed to either a continuous thaw (CT) or a daytime thaw with freezing nights (FN) for 8 days during mid-winter. Physiological differences between CT and FN seedlings were evident for all measured parameters. However, the temporal expression of treatment differences varied among parameters. When compared to FN seedlings, CT seedlings had higher rates of respiration following 24 h of treatment, and a higher net photosynthetic rate, leaf conductance and XPP after 48 h of treatment. The CT seedlings were significantly less cold tolerant than the FN seedlings following 4 days of thaw, whereas FN seedlings did not deharden over the 8 days of treatment. Examination of temporal trends among thaw-associated changes in physiology suggested that, although greater carbon exchange occurred as stomatal conductance increased, the transition from negative to positive net photosynthesis was not the result of increases in conductance, but may have been associated with thaw-induced increases in XPP. Because thaw-associated changes in gas exchange and cold hardiness were offset in time, we conclude that, if changes in these processes are physiologically linked, the linkage is indirect.

Keywords: cold hardiness, photosynthesis, Picea rubens, respiration, stomatal aperture, winter thaw, xylem pressure potential

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Schaberg, P.G.; Shane, J.B.; Hawley, G.J.; Strimbeck, G.R.; DeHayes, D.H.; Cali, P.F.; Donnelly, J.R. 1996. Physiological changes in red spruce seedlings during a simulated winter thaw. Tree Physiology. 16: 567-574.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.