Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation

Author: Gumpertz, M. L.; Wu, C.-T.; Pye, John M.;

Date: 2000

Source: Forest Science 46:95-107.

Publication Series: Scientific Journal (JRNL)

Description: Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on outbreaks consists of binary data, specifically annual presence or absence of outbreak for individual counties within the southern United States. We demonstrate a method for modeling spatially correlated proportions, such as the proportion of years that a county experiences outbreak, based on annual outbreak presence or absence data for counties in three states (NC, SC, and GA) over 31 years. In this method the proportion of years in outbreak is predicted using a marginal logistic regression model with spatial autocorrelation among counties, with adjustment of variance terms to account for temporal autocorrelation. This type of model describes the probability of outbreak as a function of explanatory variables such as host availability, physiography, climate, hurricane incidence, and management type. Explicitly including spatial autocorrelation in the model yields improved estimates of the probability of outbreak for a particular county and of the importance of the various explanatory variables than would otherwise be obtained.

Keywords: correlated binary data, correlated proportions, generalized estimating equations, marginal models, spatial prediction

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Gumpertz, M. L.; Wu, C.-T.; Pye, John M. 2000. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation. Forest Science 46:95-107.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.