Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (346KB bytes)

Title: Interspecific and environmentally induced variation in foliar dark respiration among eighteen southeastern deciduous tree species

Author: Mitchell, Katherine A.; Bolstad, Paul V.; Vose, James M.;

Date: 1999

Source: Tree Physiology. 19: 861-870.

Publication Series: Miscellaneous Publication

Description: We measured variations in leaf dark respiration rate (Rd) and leaf nitrogen (N) across species, canopy light environment, and elevation for 18 co-occurring deciduous hardwood species in the Southern Appalachian Mountains of Western North Carolina. Our overall objective was to estimate leaf respiration rates under typical conditions and to determine how they varied within and among species. Mean dark respiration rate at 20 °C (Rd,mass, : mol CO2 (kg leaf dry mass)-1 s-1) for all 18 species was 7.31 : mol kg-1 s-1. Mean Rd,mass of individual species varied from 5.17 : mol kg-1 s-1 for Quercus coccinea Muenchh. to 8.25 : mol kg-1 s-1 for Liriodendron tulipifera L. Dark respiration rate varied by leaf canopy position and was higher in leaves collected from high-light environments. When expressed on an area basis, dark respiration rate (Rd,area ,: mol CO2 (kg leaf dry area)-1 s-1) showed a strong linear relationship with the predictor variables leaf nitrogen (Narea, g N (m leaf area)-2 ) and leaf structure (LMA, g leaf dry mass (m leaf area)-2) (r2 = 0.62). This covariance was largely a result of changes in leaf structure with canopy position; smaller thicker leaves occur at upper canopy positions in high-light environments. Mass-based expression of leaf nitrogen and dark respiration rate showed that nitrogen concentration (Nmass, mg N (g leaf dry mass)-1) was only moderately predictive of variation in Rd,mass for all leaves pooled (r2 = 0.11), within species, or among species. We found distinct elevational trends, with both Rd,mass and Nmass higher in trees originating from high-elevation, cooler growth environments. Consideration of interspecies differences, vertical gradients in canopy light environment, and elevation, may improve our ability to scale leaf respiration to the canopy in forest process models.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Mitchell, Katherine A.; Bolstad, Paul V.; Vose, James M. 1999. Interspecific and environmentally induced variation in foliar dark respiration among eighteen southeastern deciduous tree species. Tree Physiology. 19: 861-870.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.