Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (235 KB)

Title: Rule-driven defect detection in CT images of hardwood logs

Author: Sarigul, Erol; Abbott, A. Lynn; Schmoldt, Daniel L.;

Date: 2000

Source: Proceedings, 4th International Conference on Image Processing and Scanning of Wood. 37-49.

Publication Series: Miscellaneous Publication

Description: This paper deals with automated detection and identification of internal defects in hardwood logs using computed tomography (CT) images. We have developed a system that employs artificial neural networks to perform tentative classification of logs on a pixel-by-pixel basis. This approach achieves a high level of classification accuracy for several hardwood species (northern red oak, Quercus rubra, L., water oak, Q. nigra, L., yellow poplar, Liriodendron tulipifera, L., and black cherry, Prunus serotina, Ehrh.), and three common defect types (knots, splits, and decay). Although the results are very satisfactory statistically, a subjective examination reveals situations that could be refined in a subsequent post-processing step. We are currently developing a rule-based approach to region refinement to augment the initial emphasis on local information. The resulting rules are domain dependent, utilizing information that depends on region shape and type of defect. For example, splits tend to be long and narrow, and this knowledge can be used to merge smaller, disjoint regions that have tentatively been labeled as splits. Similarly, image regions that represent knots, decay, and clear wood can be refined by removing small, spurious points and by smoothing the boundaries of these regions. Mathematical morphology operators can be used for most of these tasks. This paper provides details concerning the domain-dependent rules by which morphology operators are chosen, and for merging results from different operations.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Sarigul, Erol; Abbott, A. Lynn; Schmoldt, Daniel L. 2000. Rule-driven defect detection in CT images of hardwood logs. Proceedings, 4th International Conference on Image Processing and Scanning of Wood. 37-49.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.