Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.8 MB)

Title: Baseflow and peakflow chemical responses to experimental applications of ammonium sulphate to forested watersheds in north-central West Virginia, USA

Author: Edwards, Pamela J.; Wood, Frederica; Kochenderfer, James N.;

Date: 2002

Source: Hydrological Processes. 16: 2287-2310.

Publication Series: Scientific Journal (JRNL)

Description: Stream water was analysed to determine how induced watershed acidification changed the chemistry of peakflow and baseflow and to compare the relative timing of these changes. Two watersheds in north-central West Virginia, WS3 and WS9, were subjected to three applications of ammonium sulphate fertilizer per year to induce acidification. A third watershed, WS4, was the control. Samples were collected for 8 years from WS9 and for 9 years from WS3. Prior to analyses, concentration data were flow adjusted, and the influence of natural background changes was removed by accounting for the chemical responses measured from WS4. This yielded residual values that were evaluated using robust locally weighted regression and Mann-Kendall tests. On WS3, analyte responses during baseflow and peakflow were similar, although peakflow responses occurred soon after the first treatment whereas baseflow responses lagged 1-2 years. This lag in baseflow responses corresponded well with the mean transit time of baseflow on WS3. Anion adsorption on WS3 apparently delayed increases in SO4 leaching, but resulted in enhanced early leaching losses of Cl and NO3. Leaching of Ca and Mg was strongly tied, both by timing and stoichiometrically, to NO3 and SO4 leaching. F-factors for WS3 baseflow and peakflow indicated that the catchment was insensitive to acid neutralizing capacity reductions both before and during treatment, although NO4 played a large role in reducing the treatment period F-factor. By contrast, the addition of fertilizer to WS9 created an acid sensitive system in both baseflow and peakflow. On WS9, baseflow and peakflow responses also were similar to each other, but there was no time lag after treatment for baseflow. Changes in concentrations generally were not as great on WS9 as on WS3, and several ions showed no significant changes, particularly for peakflow. The lesser response to treatment on WS9 is attributed to the past abusive farming and site preparation before larch planting that resulted in poor soil fertility, erosion, and consequently, physical and chemical similarities between upper and lower soil layers. Even with fertilizer-induced NO3 and SO4 leaching increases, base cations were in low supplies and, therefore, unavailable to leach via charge pairing. The absence of a time lag in treatment responses for WS9 baseflow indicates that it has substantially different flow paths than WS3. The different hydrologies on these nearby watersheds illustrates the importance of understanding watershed hydrology when establishing a monitoring programme to detect ecosystem change.

Keywords: baseflow, peakflow, stream chemistry, watershed acidification, flow paths

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Edwards, Pamela J.; Wood, Frederica; Kochenderfer, James N. 2002. Baseflow and peakflow chemical responses to experimental applications of ammonium sulphate to forested watersheds in north-central West Virginia, USA. Hydrological Processes. 16: 2287-2310.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.