Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB)

Title: Declines in soil-water nitrate in nitrogen-saturated watersheds

Author: Edwards, Pamela J.; Williard, Karl W. J.;

Date: 2006

Source: Canadian Journal of Forest Research 36:1931-1942

Publication Series: Scientific Journal (JRNL)

Description: Two forested watersheds (WS3 and WS9) in the central Appalachians were artificially acidified with ammonium sulfate fertilizer. WS9 was treated for 8 years, whereas WS3 has been treated for approximately 15 years. Soil leachate was collected from a depth of 46 cm (B horizon) in WS9 and below the A, B, and C horizons in WS3. Nitrate concentrations from WS3 increased for approximately 10-12 years (depending upon horizon) and then did not increase from 2000 through 2003 despite continued fertilizer treatments. Nitrate concentrations in WS9 soil water increased for the first 3 years of fertilization, and then declined for another 2 years. After that time, the concentrations remained relatively constant at approximately 15 µ equiv.·L-1; this period of low nitrate concentrations included 2.3 years of fertilization followed by 8.2 years of no fertilization. Stream-water nitrate concentrations from both watersheds indicate they were in stage 2 of nitrogen saturation; however, the soil-water nitrate behavior observed within the setting of continued elevated nitrogen inputs is at odds with responses predicted in current nitrogen saturation theory. We believe that the cessation of nitrate increases in at least the B and C horizons were due primarily to abiotic retention, with recalcitrant forms of dissolved organic carbon providing the carbon needed to induce retention. These results show that nitrogen cycling in forest soil ecosystems is more complex than current nitrogen saturation theory suggests.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.



Edwards, Pamela J.; Williard, Karl W. J. 2006. Declines in soil-water nitrate in nitrogen-saturated watersheds. Canadian Journal of Forest Research 36:1931-1942


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.