Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.3 MB)

Title: Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

Author: Thompson, James A.; Kolka, Randall K.;

Date: 2005

Source: Soil Science Society of America Journal 69:1086-1093

Publication Series: Scientific Journal (JRNL)

Description: Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability within map units, and often relies on incomplete, unrepresentative, or biased data. Our objective was to develop soil-landscape models that quantify relationships between SOC and topographic variables derived from digital elevation models. Within a 1500-ha watershed in eastern Kentucky, the amount of SOC stored in the soil to a depth of 0.3 m was estimated using triplicate cores at each node of a 380-m grid. We stratified the data into four aspect classes and used robust linear regression to generate empirical models. Despite low coefficients of correlation between measured SOC and individual terrain attributes, we developed and validated models that explain up to 71% of SOC variability using three to five terrain attributes. Mean SOC content in the upper 30 cm, as predicted from our models, is 5.3 kg m-2, compared with an estimate of 2.9 kg m-2 from soil survey data. Total SOC storage in the upper 30 cm within the entire watershed is 82.0 Gg, compared with an estimate of 44.8 Gg from soil survey data. A soil-landscape modeling approach may prove useful for future SOC spatial modeling because it incorporates the continuous variability of SOC across landscapes and may be transportable to similar landscapes.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Thompson, James A.; Kolka, Randall K. 2005. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. Soil Science Society of America Journal 69:1086-1093

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.