Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (339 KB bytes)

Title: Soil CO2 evolution and root respiration in 11 year-old Loblolly Pine (Pinus taeda) Plantations as Affected by Moisture and Nutrient Availability

Author: Maier, Chris A.; Kress, L.W.;

Date: 2000

Source: Can. J. For. Res. 30: 347-359 (2000)

Publication Series: Miscellaneous Publication

Description: We measured soil CO2 evolution rates with (Sff) and without (Sms) the forest floor litter and root respiration monthly in 11-year-old loblolly pine (Pinus taeda L.) plantations during the fourth year of fertilization and irrigation treatments. Values of Sff ranged from less than 1 µmol·m-2·s-1 during the winter to greater than 5 µmol·m-2·s-1 in late spring. Average Sff was significantly greater in unfertilized relative to the fertilized stands; however, there was no difference in average Sms among treatments. Soil temperature and the mass of the forest floor (litter) explained most of the difference in Sms among treatments. Soil temperature and volumetric water content accounted for 70% of the seasonal variation in Sff. Annual carbon efflux from the soil averaged 14.1 Mg per year for all treatments. Most of the evolved carbon was derived from root respiration (50-73%). Net ecosystem productivity was -1.1 and 6.9 Mg C·ha-1 per year for the unfertilized and fertilized stands, respectively. At age 11, the unfertilized stands were functioning as a net carbon source, while fertilized stands were a strong carbon sink. It was concluded that fertilization could decrease the time for a young pine plantation to change from a carbon source to a carbon sink.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Maier, Chris A.; Kress, L.W. 2000. Soil CO2 evolution and root respiration in 11 year-old Loblolly Pine (Pinus taeda) Plantations as Affected by Moisture and Nutrient Availability. Can. J. For. Res. 30: 347-359 (2000)

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.