Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.4 MB bytes)

Title: Short-term changes in soil C, N, and biota following harvesting and regeneration of loblolly pine (Pinus taeda L.)

Author: Carter, Mason C.; Dean, Thomas J.; Zhou, Minyi; Messina, Michael G.; Wang, Ziyin;

Date: 2002

Source: Forest Ecology and Management 164: 67-88

Publication Series: Miscellaneous Publication

Description: In affiliation with the USDA-FS long-term soil productivity program, a series of studies have been established in the US gulf coast region to monitor the effects of intensive silviculture on site productivity. This report presents early results of a study of the interactive effects of harvest intensity and cultural treatments on soil C, N, and biological processes following the regeneration of two stands of loblolly pine (Pinus taeda L.), a 19-year-old stand in St. Helena Pa., LA and a 27-year-old stand in Tyler Co., TX. Two harvesting intensities (MWT, mechanical whole-tree and HFBO, hand felled bole-only removed) were combined in a factorial assignment with bedding and herbaceous weed control (at St. Helena) or bedding and fertilization (at Tyler). Total C and N in 0-15 cm of soil were determined before, 9 and 21 months after harvesting. Total C and N in 0-60 cm were measured 2 years after harvesting at St. Helena and 3 years after harvesting at Tyler. At Tyler, N mineralization, soil respiration, and microbial populations were monitored before and for 2 years after harvesting. In the 19-year-old stand, MWT removed 67% of the above-ground biomass and 38% of the above-ground N compared to 46% and 10% for HEBO. In the 27-year-old stand, MWT removed 62% of the biomass and 35% of the N, while HFBO removed 48% and 13%. Harvesting method had no effect on total C or total N in surface soil but bedding resulted in higher levels of both 1 years after harvesting. The effect of bedding was still detected 3 years after treatment at Tyler but not at St. Helena. Herbaceous weed control at St. Helena had no effect on total N in the surface 60 cm of soil but significantly reduced total C at 30-60 cm 6 months after treatment. Sixteen months after application of 250 kg ha-1 of diammonium phosphate (DAP) at Tyler, the surface 60 cm of mineral soil in fertilized plots averaged 373 kg ha-1 more total N than did soil from unfertilized plots. Total C in the surface 60 cm was not effected by fertilization. Irrespective of harvesting or cultural treatment, total C and total N in the surface 15 cm of soil declined at both sites during the first year after harvesting. The declines were 8.2 Mg ha-1 total C, 361 kg ha-1 total N at St. Helena and 7.6 Mg ha-1 total C, 380 kg ha-1 total N at Tyler. After 2 years, total C and total N had returned to >90% of pre-harvest levels at both locations. Harvesting intensity had no effect on soil temperature, soil respiration, N mineralization, or microbial populations, but bedding significantly increased soil respiration and N mineralization during the first growing season after harvesting. Net N mineralization was not effected by treatments during the second year after harvesting, but was lower in the harvested plots than in the unharvested reference and inversely related to the pre-harvest rate. Fertilization with DAP increased mineral N flux for 2 months following application, but to a lessor extent than did bedding. Nitrification was significantly greater than asnmonification in all treatments during the first year after harvesting but was equal to or less than ammonification during the second growing season and in unharvested plots. In these US gulf coast pine stands, harvesting and regeneration resulted in significant but transitory perturbation in soil processes. All of the processes studies returned to or near pre-harvest levels after two growing seasons. Differences in surface biomass removal, between whole-tree and bole-only harvesting, had no measurable effect on the monitored soil processes during the first two growing seasons after harvesting although differences may appear later in the rotation. Harvesting, per se, resulted in an increase in nitrification but no increase in net N mineralization. Bedding incorporated surface organic matter, accelerated microbial activity, and incre

Keywords: Pinus, N mineralization, soil respiration, soil microbes

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Carter, Mason C.; Dean, Thomas J.; Zhou, Minyi; Messina, Michael G.; Wang, Ziyin 2002. Short-term changes in soil C, N, and biota following harvesting and regeneration of loblolly pine (Pinus taeda L.). Forest Ecology and Management 164: 67-88

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.