Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.1 MB bytes)

Title: Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA

Author: Davis, John Paul; Haines, Bruce; Coleman, David; Hendrick, Ron;

Date: 2004

Source: Forest Ecology and Management 187: 19-34

Publication Series: Miscellaneous Publication

Description: Attributes of fine roots (<2.0 mm diameter) were quantified in five southern Appalachian plant communities along an elevational gradient. These attributes include the seasonal dynamics of fine root mass and length, the depth distribution of fine roots, fine root width and, most importantly, the annual appearance and disappearance of fine roots. The principal objectives of this study were two-fold: (1) to compare these attributes of fine roots between plant communities and (2) to compare the results of the two methods used to quantify the attributes: (1) harvesting roots from forest soil with soil cores and (2) photographing roots growing against the windows of minirhizotron boxes. The plant communities that were sampled are characteristic of the region and are designated as follows from lowest elevation (782 m) to highest elevation (1347 m): (1) xeric ridge, (2) cove hardwoods, (3) low elevation mixed oak, (4) high elevation mixed oak, and (5) northern hardwoods. Fine root mass varies seasonally in this temperate region with lowest and highest mass in the spring and autumn, respectively. Fine root mass and fine root mass appearance were lowest in the cove hardwood community and highest in the low elevation mixed oak community. The total length of fine roots was highest in the xeric ridge community and lowest in the low elevation mixed oak community. The high total root length in the xeric ridge community was due to the presence of an exceptionally dense mat of very fine roots found there. The width of these roots was significantly less than that of roots on all other plots. Subsequent regression illustrates two strong patterns in the data. First, fine root mass, fine root mass appearance and leaf production were positively correlated. Second, fine root length and soil moisture were negatively correlated. The accumulation of root mass in these communities was linked to overall site productivity and the development of root length in response to moisture stress. Only the timing of root growth initiation was related to elevation and the associated parameter of soil temperature. The best estimates of fine root appearance and disappearance were generated by harvesting roots rather than photographing them. Some methodological problems with root photography implemented in this study are addressed.

Keywords: Fine root dynamics, fine root production, gradient analysis, minirhizotrons, Southern Appalachia, temperature gradients

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Davis, John Paul; Haines, Bruce; Coleman, David; Hendrick, Ron 2004. Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. Forest Ecology and Management 187: 19-34

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.