Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (814 KB bytes)

Title: Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types.

Author: Meinzer, F.C.; Brooks, J.R.; Bucci, S.; Goldstein, G.; Scholz, F.G.; Arren, J.M.;

Date: 2004

Source: Tree Physiology. 24: 919-928

Publication Series: Miscellaneous Publication

Description: We used concurrent measurements of soil water content and soil water potential (Ψsoil) to assess the effects of Ψsoil on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles at six sites characterized by differences in the types and amounts of woody vegetations and in climate. The six sites included a semi-arid old-growth ponderosa pine (Pinus ponderosa Dougl. ex P. Laws & C. Laws) forest, a moist old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forest, a 24-year-old Douglas-fir forest and three Brazilian savanna sites differing in tree density. At all of the sites Hr was confined largely to the upper 60 cm of soil. There was a common threshold relationship between the relative magnitude of HR and Ψsoil among the six study sites. Below a threshold Ψsoil of about -0.4 Mpa, evernight recharge of soil water storage increased sharply, and reached a maximum value of 80-90% over a range of Ψsoil frin ~ -1.2 to -1.5 Mpa. Although amounts of water hydraulically redistributed to the upper 60 cm of soil were relatively small (0 to 0.4 mm day-1), they greatly reduced the rates of seasonal decline in Ψsoil. The effectivenesss of HR in delaying soil trying diminished with increasing sapwood area per ground area. The relationship between soil water utilization and Ψsoil in the 20-60-cm layer was nearly identical for all six sites. Soil water utilization varied with a surrogate measure of rhizosphere conductance in a similar manner at all six sites. The similarities in relationships between Ψsoil and HR, soil water utilization and relative rhizosphere conductance among the six sites, suggests that, despite probable differences in maximum rooting depth and density, there was a convergence in biophysical controls on soil water utilization and redistribution in the upper soil layers where the density of finer roots is greatest.

Keywords: Coniferous forest, Pinus ponderosa, Pseudotsuga menziesii, rhizosphere, roots, soil water potential, tropical savanna

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Meinzer, F.C.; Brooks, J.R.; Bucci, S.; Goldstein, G.; Scholz, F.G.; Arren, J.M. 2004. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiology. 24: 919-928

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.