Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (50 K bytes)

Title: Arbuscular mycorrhizal inoculation following biocide treatment improves Calocedrus decurrens survival and growth in nursery and outplanting sites

Author: Amaranthus, Michael; Steinfeld, David;

Date: 2005

Source: In: Dumroese, R. K.; Riley, L. E.; Landis, T. D., tech. coords. 2005. National proceedings: Forest and Conservation Nursery Associations—2004; 2004 July 12–15; Charleston, NC; and 2004 July 26–29; Medford, OR. Proc. RMRS-P-35. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 103-108

Publication Series: Proceedings (P)

   Note: This article is part of a larger document. View the larger document

Description: Commercial production of tree seedlings often includes various biocidal soil treatments for disease control. Such treatments can be effective in eliminating or reducing disease organisms in the soil, but may also eliminate non-targeted beneficial soil organisms, such as mycorrhizal fungi, that improve seedling performance, both in the nursery as well as the outplanted environment. The arbuscular mycorrhizal fungal (AMF) relationship has been verified for some important western coniferous species such as incense cedar (Calocedrus decurrens [Torr.] Florin), coastal redwood (Sequoia sempervirens [D. Don] Endl), and western redcedar (Thuja plicata J. Donne ex D. Don).

This study was designed to determine the response of incense cedar after soil fumigation with and without the addition of phosphorous fertilizer and a commercial mycorrhizal inoculant containing Glomus intraradices. Incense cedar seedling performance was monitored in both the nursery and outplanting environments.

At the nursery, non-mycorrhizal seedlings had significantly less foliar phosphorous levels even when phosphorous fertilizers were applied. Mycorrhizal inoculation at the nursery significantly improved height and seedling survival on treated plots. Seedlings from the nursery beds were then outplanted on 2 reforestation sites. Mycorrhizal inoculation at the nursery improved survival and growth of seedlings at the outplanted site.

Individual papers from this publication

Keywords: bareroot seedlings, nursery culture, outplanting performance

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Amaranthus, Michael; Steinfeld, David 2005. Arbuscular mycorrhizal inoculation following biocide treatment improves Calocedrus decurrens survival and growth in nursery and outplanting sites. In: Dumroese, R. K.; Riley, L. E.; Landis, T. D., tech. coords. 2005. National proceedings: Forest and Conservation Nursery Associations—2004; 2004 July 12–15; Charleston, NC; and 2004 July 26–29; Medford, OR. Proc. RMRS-P-35. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 103-108

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.