Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (582 KB bytes)

Title: Seed Dispersal Near and Far: Patterns Across Temperate and Tropical Forests

Author: Clark, James S.; Silman, Miles; Kern, Ruth; Macklin, Eric; HilleRisLambers, Janneke;

Date: 1999

Source: Ecology, 80(5), 1999, pp. 1475-1494

Publication Series: Miscellaneous Publication

Description: Dispersal affects community dynamics and vegetation response to global change. Understanding these effects requires descriptions of dispersal at local and regional scales and statistical models that permit estimation. Classical models of dispersal describe local or long-distance dispersal, but not both. The lack of statistical methods means that models have rarely been fitted to seed dispersal in closed forests. We present a mixture model of dispersal that assumes a range of disperal patterns, both local and long distance. The bivariate Student's t or "2Dt" follows from an assumption that the distance parameter in a Gaussian model varies randomly, thus having a density of its own. We use an inverse approach to "compete" our mixture model against classical alternatives, using seed rain databases from temperate broadleaf, temperate mixed-conifer, and tropical floodplain forests. For most species, the 2Dt model fits dispersal data better than do classical models. The superior fit results from the potential for a convex shape near the source tree and a "fat tail." Our parameter estimates have implications for community dynamics at local scales, for vegetation responses to global change at regional scales, and for differences in seed dispersal among biomes. The 2Dt model predicts that less seed travels beyond the immediate crown influence (<5 m) than is predicted under a Gaussian model, but that more seed travels longer distances (>30 m). Although Gaussian and exponential models predict slow population spread in the face of environmental change, our dispersal estimates suggest rapid spread. The preponderance of animal-dispersed and rare seed types in tropical forests results in noisier patterns of dispersal than occur in temperate hardwood and conifer stands.

Keywords: bayesian analysis, dispersal kernel, exponential model, forest dynamics, gamma, Gaussian model, migrations seed dispersal, seed shadow

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Clark, James S.; Silman, Miles; Kern, Ruth; Macklin, Eric; HilleRisLambers, Janneke 1999. Seed Dispersal Near and Far: Patterns Across Temperate and Tropical Forests. Ecology, 80(5), 1999, pp. 1475-1494

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.