Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (229 KB bytes)

Title: Two dimensional finite element heat transfer models for softwood

Author: Gu, Hongmei; Hunt, John F.;

Date: 2004

Source: Proceedings : 7th Pacific Rim Bio-Based Composites Symposium : Nanjing, China, October 31--November 2, 2004 : Volume 1. [S.l.] : Science & Technique Literature Press: Pages 344-354

Publication Series: Miscellaneous Publication

Description: The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential directions and have not differentiated the effects of cellular alignment, earlywood/latewood differentiation, ring orientation, and moisture content. Two 2-Dimensional finite element models have been developed that take these parameters into consideration. The first model is used to determine the effective thermal conductivities of softwood cellular structure as a function of cell alignment, cell porosity or density, and moisture content. The second model uses the results from the first model to help explain the transient heat transfer effects of ring orientation for any board "cut" from any location in a log, earlywood/latewood ratio, earlywood and latewood densities, and growth rate. This paper, briefly discusses the two models and their development. Initial results are presented showing the effects of density and moisture content on the effective thermal conductivity values for softwood cell structure. Comparisons are made with empirical equations for thermal conductivity of wood in the literature. The second finte element board model is introduced to show the effects of ring orientation at 0% moisture content for several boards "cut" from several locations in a log. These new models are useful for enhancing our understanding of fundamental heat transfer effects in various wood boards.

Keywords: Finite element modeling, thermal conductivity, transient heat transfer, cellular structure, growth ring, moisture content

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Gu, Hongmei; Hunt, John F. 2004. Two dimensional finite element heat transfer models for softwood. Proceedings : 7th Pacific Rim Bio-Based Composites Symposium : Nanjing, China, October 31--November 2, 2004 : Volume 1. [S.l.] : Science & Technique Literature Press: Pages 344-354

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.