Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (398 KB bytes)

Title: Lignins : natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids

Author: Ralph, John; Lundquist, Knut; Brunow, Gosta; Lu, Fachuang; Kim, Hoon; Schatz, Paul F.; Marita, Jane M.; Hatfield, Ronald D.; Ralph, Sally A.; Christensen, Jorgen Holst; Boerjan, Wout;

Date: 2004

Source: Phytochemistry reviews. Vol. 3 (2004): p. 29-60.

Publication Series: Miscellaneous Publication

Description: Lignins are complex natural polymers resulting from oxidative coupling of, primarily, 4-hydroxyphenylpropanoids. An understanding of their nature is evolving as a result of detailed structural studies, recently aided by the availability of lignin-biosynthetic-pathway mutants and transgenics. The currently accepted theory is that the lignin polymer is formed by combinatorial-like phenolic coupling reactions, via radicals generated by peroxidase-H2O2, under simple chemical control where monolignols react endwise with the growing polymer. As a result, the actual structure of the lignin macromolecule is not absolutely defined or determined. The “randomness” of linkage generation (which is not truly statistically random but governed, as is any chemical reaction, by the supply of reactants, the matrix, etc.) and the astronomical number of possible isomers of even a simple polymer structure, suggest a low probability of two lignin macromolecules being identical. A recent challenge to the currently accepted theory of chemically controlled lignification, attempting to bring lignin into line with more organized biopolymers such as proteins, is logically inconsistent with the most basic details of lignin structure. Lignins may derive in part from monomers and conjugates other than the three primary monolignols (p-coumaryl, coniferyl, and sinapyl alcohols). The plasticity of the combinatorial polymerization reactions allows monomer substitution and significant variations in final structure which, in many cases, the plant appears to tolerate. As such, lignification is seen as a marvelously evolved process allowing plants considerable flexibility in dealing with various environmental stresses, and conferring on them a striking ability to remain viable even when humans or nature alter “required” ligninbiosynthetic-pathway genes/enzymes. The malleability offers significant opportunities to engineer the structures of lignins beyond the limits explored to date.

Keywords: Biosynthesis, inter-unit linkage, lignification, lignin model, monolignol, mutant, optical activity, oxidative coupling, peroxidase, polymerization, transgenic, lignin, biotechnology, 4-hydroxyphenyl-propanoids

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Ralph, John; Lundquist, Knut; Brunow, Gosta; Lu, Fachuang; Kim, Hoon; Schatz, Paul F.; Marita, Jane M.; Hatfield, Ronald D.; Ralph, Sally A.; Christensen, Jorgen Holst; Boerjan, Wout 2004. Lignins : natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochemistry reviews. Vol. 3 (2004): p. 29-60.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.