Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (330 KB bytes)

Title: Sinapate dehydrodimers and sinapate−ferulate heterodimers in cereal dietary fiber

Author: Bunzel, Mirko; Ralph, John; Kim, Hoon; Lu, Fachuang; Ralph, Sally A.; Marita, Jane M.; Hatfield, Ronald D.; Steinhart, Hans;

Date: 2003

Source: Journal of agricultural and food chemistry. Vol. 51, no. 5 (2003): pages 1427-1434.

Publication Series: Miscellaneous Publication

Description: Two 8-8-coupled sinapic acid dehydrodimers and at least three sinapate-ferulate heterodimers have been identified as saponification products from different insoluble and soluble cereal grain dietary fibers. The two 8-8-disinapates were authenticated by comparison of their GC retention times and mass spectra with authentic dehydrodimers synthesized from methyl or ethyl sinapate using two different single-electron metal oxidant systems. The highest amounts (481 μg/g) were found in wild rice insoluble dietary fiber. Model reactions showed that it is unlikely that the dehydrodisinapates detected are artifacts formed from free sinapic acid during the saponification procedure. The dehydrodisinapates presumably derive from radical coupling of sinapate-polymer esters in the cell wall; the radical coupling origin is further confirmed by finding 8-8 and 8-5 (and possibly 8-O-4) sinapate-ferulate cross-products. Sinapates therefore appear to have an analogous role to ferulates in cross-linking polysaccharides in cereal grains and presumably grass cell walls in general. Two 8-8-coupled sinapic acid dehydrodimers and at least three sinapate-ferulate heterodimers have been identified as saponification products from different insoluble and soluble cereal grain dietary fibers. The two 8-8-disinapates were authenticated by comparison of their GC retention times and mass spectra with authentic dehydrodimers synthesized from methyl or ethyl sinapate using two different single-electron metal oxidant systems. The highest amounts (481 μg/g) were found in wild rice insoluble dietary fiber. Model reactions showed that it is unlikely that the dehydrodisinapates detected are artifacts formed from free sinapic acid during the saponification procedure. The dehydrodisinapates presumably derive from radical coupling of sinapate-polymer esters in the cell wall; the radical coupling origin is further confirmed by finding 8-8 and 8-5 (and possibly 8-O-4) sinapate-ferulate cross-products. Sinapates therefore appear to have an analogous role to ferulates in cross-linking polysaccharides in cereal grains and presumably grass cell walls in general.

Keywords: Zizania, Gramineae, wild rice, dietary fiber, hydroxycinnamic acid, sinapate, sinapic acid, dehydrodimer, ferulate, ferulic acid, radical coupling, cross-coupling, cell-wall cross-linking, single-electron oxidation, rice, grasses, mass spectrometry, hydroxycinnamic acid, cereals, dietary fiber, ferulate, dehydromers, heterodimers, fiber properties

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bunzel, Mirko; Ralph, John; Kim, Hoon; Lu, Fachuang; Ralph, Sally A.; Marita, Jane M.; Hatfield, Ronald D.; Steinhart, Hans 2003. Sinapate dehydrodimers and sinapate−ferulate heterodimers in cereal dietary fiber. Journal of agricultural and food chemistry. Vol. 51, no. 5 (2003): pages 1427-1434.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.