Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (569 KB bytes)

Title: Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae)

Author: McArthur, E. Durant; Sanderson, Stewart C.;

Date: 1999

Source: American journal of botany. 86(12): 1754-1775

Publication Series: Miscellaneous Publication

Description: The subgenus Tridentatae of Artemisia (Asteraceae: Anthemideae) is composed of 11 species of various taxonomic and geographic complexities. It is centered on Artemisia tridentata with its three widespread common subspecies and two more geographically confined ones. Meiotic chromosome counts on pollen mother cells and mitotic chromosome counts on root tips were made on 364 populations (X = 3.1 plants per population). These population counts are ~60% of all Tridentatae counts. Some are first records for taxa. The Tridentatae are a polyploid complex (x = 9) with ploidy levels from 2x to 8x, but mostly 2x (48%) and 4x (46%). Polyploidy occurs in nine of the 11 species and in many subspecies as well. Supernumerary or b chromosomes are present only at a low frequency. In the principal species, A. tridentata, 2x plants are larger than 4x ones, which are adapted to drier conditions, probably in consequence of their slower growth rates. Gigas diploidy is a phenomenon shared by some other woody genera, but is in contrast to the gigas polyploid nature of many herbaceous genera. Polyploidy occurs within populations and is essentially autoploid. Hybridization sometimes occurs at taxa interfaces in stable hybrid zones. Stable Tridentatae hybrid zones coupled with the group’s inherent propensity for polyploidization has led to the establishment of a geographically and numerically large and successful complex of species.

Keywords: Artemisia, Asteraceae, cytogeography, hybridization, polyploidy, sagebrush, Seriphidium, Tridentatae

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



McArthur, E. Durant; Sanderson, Stewart C. 1999. Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae). American journal of botany. 86(12): 1754-1775


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.