Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (644 KB bytes)

Title: Relationship between stem CO2 efflux, stem sap velocity and xylem CO2 concentration in young loblolly pine trees

Author: Maier, Chris A.; Clinton, Barton D.;

Date: 2006

Source: Plant, Cell and Environment Vol. 26: 1471-1483

Publication Series: Miscellaneous Publication

Description: We measured diel patterns of stem surface CO2 efflux (Es, mol m-2 s-1), sap velocity (Vs, mn s-1) and xylem CO2 concentration ([CO2]) (Xs, %) in 8-year-old loblolly pine trees during the spring to determine how v, and X, influence Es. All trees showed a strong diel hysteresis between Es and stem temperature, where at a given temperature, Es, was lower during the day than at night. Diel variation in temperature-independent Es were correlated with Vs (R2 = 0.54), such that at maximum vs, Es was reduced between 18 and 40%. However, this correlation may not represent a cause-and-effect relationship. In a subset of trees, vs was artificially reduced by progressively removing the tree canopy. Reducing vs to near zero had no effect on Es and did not change the diel hysteretic response to temperature. Diel xs tended to decrease the Vs and increase with Es, however, in defoliated trees, large increases in Xs, when vs = 0, had no effect on Es. We conclude that at this time of the year, Es, is driven primarily by respiration of cambium and phloem tissues and that sap flow and xylem transport of CO2 had no direct influence on Es.

Keywords: Chambers, CO2, microelectrode, granier sensors, Pinus taeda, sap flow, stem respiration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Maier, Chris A.; Clinton, Barton D. 2006. Relationship between stem CO2 efflux, stem sap velocity and xylem CO2 concentration in young loblolly pine trees. Plant, Cell and Environment Vol. 26: 1471-1483

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.