Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.1 MB bytes)

Title: Modeling of the interactions between forest vegetation, disturbances, and sediment yields

Author: Istanbulluoglu, Erkan; Tarboton, David G.; Pack, Robert T.; Luce, Charles H.;

Date: 2004

Source: Journal of geophysical research. 109: F01009 (22 p.)

Publication Series: Miscellaneous Publication

Description: The controls of forest vegetation, wildfires, and harvest vegetation disturbances on the frequency and magnitude of sediment delivery from a small watershed (~3.9 km2) in the Idaho batholith are investigated through numerical modeling. The model simulates soil development based on continuous bedrock weathering and the divergence of diffusive sediment transport on hillslopes. Soil removal is due to episodic gully erosion, shallow landsliding, and debris flow generation. In the model, forest vegetation provides root cohesion and surface resistance to channel initiation. Forest fires and harvests reduce the vegetation. Vegetation loss leaves the land susceptible to erosion and landsliding until the vegetation cover reestablishes in time. Simulation results compare well with field observations of event sediment yields and long-term averages over ~10,000 years. When vegetation is not disturbed by wildfires over thousands of years, sediment delivery is modeled to be less frequent but with larger event magnitudes. Increased values of root cohesion (representing denser forests) lead to higher event magnitudes. Wildfires appear to control the timing of sediment delivery. Compared to undisturbed forests, erosion is concentrated during the periods with low erosion thresholds, often called accelerated erosion periods, following wildfires. Our modeling suggests that drainage density is inversely proportional to root cohesion and that reduced forest cover due to wildfires increases the drainage density. We compare the sediment yields under anthropogenic (harvest) and natural (wildfire) disturbances. Disturbances due to forest harvesting appear to increase the frequency of sediment delivery; however, the sediment delivery following wildfires seems to be more severe. These modeling-based findings have implications for engineering design and environmental management, where sediment inputs to streams and the fluctuations and episodicity of these inputs are of concern.

Keywords: sediment yield, wildfires, forest management, hydrology

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Istanbulluoglu, Erkan; Tarboton, David G.; Pack, Robert T. ; Luce, Charles H. 2004. Modeling of the interactions between forest vegetation, disturbances, and sediment yields. Journal of geophysical research. 109: F01009 (22 p.)

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.