Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees.

Author: Bucci, Sandra J.; Goldstein, Guillermo; Meinzer, Frederick C.; Franco, Augusto C.; Campanello, Paula; Scholz, Fabián G.;

Date: 2005

Source: Trees. 19: 296-304

Publication Series: Miscellaneous Publication

Description: Seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum ΨL were small in all of the study species. Water use and water status were regulated by a combination of plant physiological and architectural traits. Despite a nearly 3-fold increase in mean D between the wet and dry season, a sharp decline in stomatal conductance with increasing D constrained seasonal variation in minimum ΨL by limiting transpiration per unit leaf area (E). The leaf surface area per unit of sapwood area (LA/SA), a plant architectural index of potential constraints on water supply in relation to transpirational demand, was about 1.5-8 times greater in the wet season compared to the dry season for most of the species. The changes in LA/SA from the wet to the dry season resulted from a reduction in total leaf surface area per plant, which maintained or increased total leaf-specific hydraulic conductance (G1) during the dry season. The isohydric behavior of Cerrado tree species with respect to minimum ΨL throughout the year thus was the result of strong stomatal control of evaporative losses, a decrease in total leaf surface area per tree during the dry season, an increase in total leaf-specific hydraulic conductance, and a tight coordination between gas and liquid phase conductance. In contrast with the seasonal isohydric behavior of minimum ΨL, predawn ΨL in all species was substantially lower during the dry season compared to the wet season. During the dry season, predawn ΨL was more negative than bulk soil Ψ estimated by extrapolating plots of E versus ΨL to E = 0. Predawn disequilibrium between plant and soil Ψ was attributable largely to nocturnal transpiration, which ranged from 15 to 22% of the daily total. High nocturnal water loss may also have prevented internal water storage compartments from being completely refilled at night before the onset of transpiration early in the day.

Keywords: hydraulic conductance, nocturnal transpiration, plant-water relations, sap flow, savannas

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Bucci, Sandra J.; Goldstein, Guillermo; Meinzer, Frederick C.; Franco, Augusto C.; Campanello, Paula; Scholz, Fabián G. 2005. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees. Trees. 19: 296-304

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.