Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (340 KB bytes)

Title: Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

Author: Groover, Andrew; Fontana, Joseph R.; Dupper, Gayle; Ma, Caiping; Martienssen, Robert; Strauss, Steven; Meilan, Richard;

Date: 2004

Source: Plant Physiology, Vol. 134: 1742-1751

Publication Series: Miscellaneous Publication

Description: We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS expression phenotypes are dominant and are scored in primary transformants, this system does not require rounds of sexual recombination, a typical barrier to developmental genetic studies in trees. Gene and enhancer trap lines defining genes expressed during primary and secondary vascular development were identified and characterized. Collectively, the vascular gene expression patterns revealed that approximately 40% of genes expressed in leaves were expressed exclusively in the veins, indicating that a large set of genes is required for vascular development and function. Also, significant overlap was found between the sets of genes responsible for development and function of secondary vascular tissues of stems and primary vascular tissues in other organs of the plant, likely reflecting the common evolutionary origin of these tissues. Chromosomal DNA flanking insertion sites was amplified by thermal asymmetric interlaced PCR and sequenced and used to identify insertion sites by reference to the nascent Populus trichocarpa genome sequence. Extension of the system was demonstrated through isolation of full-length cDNAs for five genes of interest, including a new class of vascular-expressed gene tagged by enhancer trap line cET-1-pop1-145. Poplar gene and enhancer traps provide a new resource that allows plant biologists to directly reference the poplar genome sequence and identify novel genes of interest in forest biology.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Groover, Andrew; Fontana, Joseph R.; Dupper, Gayle; Ma, Caiping; Martienssen, Robert; Strauss, Steven; Meilan, Richard 2004. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees. Plant Physiology, Vol. 134: 1742-1751

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.