Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.03 MB bytes)

Title: Red spruce ecosystem level changes following 14 years of chronic N fertilization

Author: McNulty, Steven G.; Boggs, Johnny; Aber, John D.; Rustad, Lindsey; Magill, Allison;

Date: 2005

Source: Forest Ecology and Management, Vol. 219: 279-291

Publication Series: Miscellaneous Publication

Description: In the early 1980s, nitrogen (N) deposition was first postulated as a cause of N saturation and spruce mortality across the northeastern US. In 1988, a series of high elevation spruce-fir forest N addition plots were established on Mt. Ascutney (southeastern) Vermont to test this hypothesis. The paired plots each received, in addition to ambient N deposition, 15.7 kg N ha-1 year-1 (low N addition), 31.4 kg N ha-1 year-1(high N addition) or no N addition (control) from 1988 to 2002. Over the years, potential and annual in situ forest floor net N mineralization and net nitrification, foliar and forest floor elemental concentrations, and basal area growth by species were measured on each plot. Live basal area decreased by 18% on the low N addition plots, and by 40% on the high N addition plots between 1988 and 2002, while the control plots had a 9% increase in basal area over the same time period. Initially, none of the plots had measurable rates of in situ nitrification, but by 2002,21% of the mineralized N was being annually nitrified on the high N addition plots, compared to no net nitrification on the control plots. We also observed a significant increase in forest floor N concentration on the high N plots from 1988 to 2000. Reductions in live basal area, and increased net nitrification suggest that we induced late stage N saturation on the high N addition plots. The low N addition plots exhibited symptoms of mid-stage N saturation, with a smaller reduction in live basal area and net N mineralization, and a smaller increase in net nitrification compared to the high N addition plot values. Other correlations between forest floor and vegetation composition and function, and N saturation will be discussed in the paper.

Keywords: N saturation, red spruce, fertilization

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


McNulty, Steven G.; Boggs, Johnny; Aber, John D.; Rustad, Lindsey; Magill, Allison 2005. Red spruce ecosystem level changes following 14 years of chronic N fertilization. Forest Ecology and Management, Vol. 219: 279-291

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.