Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.7 MB bytes)

Title: Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations.

Author: Brooks, J. Renée; Meinzer, Frederick C.; Warren, Jeffery M.; Domec, Jean-Christophe; Coulombe, Rob.;

Date: 2006

Source: Plant, Cell and Environment. 29: 138-150

Publication Series: Miscellaneous Publication

Description: Hydraulic redistribution (HR) occurs in many ecosystems; however, key questions remain about its consequences at the ecosystem level. The objectives of the present study were to quantify seasonal variation in HR and its driving force, and to manipulate the soil-root system to elucidate physiological components controlling HR and utilization of redistributed water. In the upper soil layer of a young Douglas-fir forest, HR was negligible in early summer, but increased to 0.17 mm day-1 (20-60 cm layer) by late August when soil water potential was approximately -1 MPa. When maximum HR rates were observed, redistributed water replenished approximately 40% of the water depleted from the upper soil on a daily basis. Manipulations to the soil or to the soil/plant water potential driving force altered the rate of observed HR indicating that the rate of HK is controlled by a complex interplay between competing soil and plant water potential gradients and pathway resistances. Separating roots from the transpiring tree resulted in increased HR, and sap flow measurements on connected and disconnected roots showed reversal of water flow, a prerequisite for HR. Irrigating a small plot with deuterated water demonstrated that redistributed water was taken up by small understory plants as far as 5 m from the watering source, and potentially further, but the utilization pattern was patchy. HR in the upper soil layers near the watering plot was twice that of the control HR. This increase in HR also increased the amount of water utilized by plants from the upper soil. These results indicate that the seasonal timing and magnitude of HR was strongly governed by the development of water potential differences within the soil, and the competing demand for water by the above ground portion of the tree.

Keywords: Pseudotsuga menziesii, deuterium labelling, hydraulic lift, seasonal variation, soil water utilization, soil water potential, trenching, water transport

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Brooks, J. Renée; Meinzer, Frederick C.; Warren, Jeffery M.; Domec, Jean-Christophe; Coulombe, Rob. 2006. Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant, Cell and Environment. 29: 138-150


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.