Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (490 KB bytes)

Title: Turbidity and total suspended solid concentration dynamics in streamflow from California oak woodland watersheds

Author: Lewis, David J.; Tate, Kenneth W.; Dahlgren, Randy A.; Newell, Jacob;

Date: 2002

Source: In: Standiford, Richard B., et al, tech. editor. Proceedings of the Fifth Symposium on Oak Woodlands: Oaks in California's Challenging Landscape. Gen. Tech. Rep. PSW-GTR-184, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 107-118

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: Resource agencies, private landowners, and citizen monitoring programs utilize turbidity (water clarity) measurements as a water quality indicator for total suspended solids (TSS – mass of solids per unit volume) and other constituents in streams and rivers. The dynamics and relationships between turbidity and TSS are functions of watershed-specific factors and temporal trends within storms and across seasons. This paper describes these relationships using four years of water quality and stream discharge data from seven experimental watersheds in the northern Sierra foothills and north coast oak woodlands of California. Rating curves predicting TSS concentration as a function of turbidity were developed with simple linear regressions. Stream discharge rapidly rose and fell in response to winter storms once watershed soils were saturated. Turbidity and TSS concentrations paralleled this seasonal rise and fall in stream discharge. In addition, a hysteresis effect was observed for both TSS and turbidity during individual storms. Regression slopes for TSS versus turbidity were significantly different between watersheds of similar and differing soils, geology, and hydrology. These results indicate the need for intensive, storm-based sampling to adequately characterize TSS and turbidity in oak woodland watersheds. Water quality monitoring programs that account for the watershed specific nature of turbidity and TSS relationships and the influence that climate, soils, geology, and hydrology have on these relationships will better represent water quality and sediment transport in California oak woodland watersheds.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Lewis, David J.; Tate, Kenneth W.; Dahlgren, Randy A.; Newell, Jacob 2002. Turbidity and total suspended solid concentration dynamics in streamflow from California oak woodland watersheds. In: Standiford, Richard B., et al, tech. editor. Proceedings of the Fifth Symposium on Oak Woodlands: Oaks in California''s Challenging Landscape. Gen. Tech. Rep. PSW-GTR-184, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 107-118

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.