Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (430 K bytes)

Title: Runoff and Erosion Effects after Prescribed Fire and Wildfire on Volcanic Ash-Cap Soils

Author: Robichaud, P. R.; Pierson, F. B.; Brown, R. E.;

Date: 2007

Source: In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 83-94

Publication Series: Proceedings (P)

   Note: This article is part of a larger document. View the larger document

Description: After prescribed burns at three locations and one wildfire, rainfall simulations studies were completed to compare postfire runoff rates and sediment yields on ash-cap soil in conifer forest regions of northern Idaho and western Montana. The measured fire effects were differentiated by burn severity (unburned, low, moderate, and high).

Results indicate that this dry, undisturbed ash-cap soil exhibits high runoff rates and is naturally water repellent at the surface. However, the unburned, undisturbed ash-cap soil is not highly erodible due the protective duff layer on the surface. When ash-cap soil was exposed to prolonged soil heating (high severity burn), surface water repellency was destroyed and a strong water repellent layer occurred a few centimeters beneath the soil surface. With the simulated rainfall, the non-water repellent surface layer became saturated; thus making the soil above the water repellent layer highly erodible—especially during high intensity rainfall.

Keywords: volcanic ash-cap soils, forest soils, Pacific Northwest, water repellent soils, rainfall simulation, burn severity, runoff, erosion

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Robichaud, P. R.; Pierson, F. B.; Brown, R. E. 2007. Runoff and Erosion Effects after Prescribed Fire and Wildfire on Volcanic Ash-Cap Soils. In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 83-94

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.