Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (349 KB bytes)

Title: The Effects of Nitrogen Deposition, Ambient Ozone, and Climate Change on Forests in the Western U.S.

Author: Fenn, M. E.;

Date: 2006

Source: In: Aguirre-Bravo, C.; Pellicane, Patrick J.; Burns, Denver P.; and Draggan, Sidney, Eds. 2006. Monitoring Science and Technology Symposium: Unifying Knowledge for Sustainability in the Western Hemisphere Proceedings RMRS-P-42CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 2-8

Publication Series: Proceedings (P)

   Note: This article is part of a larger document. View the larger document

Description: Nitrogen (N) deposition in the western United States is most severe near major urban areas or downwind of agricultural regions, particularly in areas where confined animal feeding operations such as dairies or feedlots are located. Nitrogen saturated ecosystems are predominantly found in hotspots located within 60 km of urban or agricultural emissions source areas, where N deposition inputs are 20 kg ha-1 yr-1 or greater. Nitrogen deposition gradients are steep with rapidly decreasing deposition with increasing distance from the source area. More subtle ecological effects of N deposition, such as fertilization effects and changes in sensitive biotic communities (for example, lichens and diatoms) occur over a much wider area than the severely affected hotspots. Effects on these sensitive ecosystem components are observed with N deposition levels as low as 3 to 8 kg ha-1 yr-1. Visual ozone injury in the West is most severe in pine trees in forests in southern California and in the southern Sierra Nevada in central California. Recent ozone exposure data from passive monitoring networks demonstrate that elevated ozone exposures can occur as far as 250 km from emissions source areas. The geographic scope of the areas affected by ozone has increased in the past 30 years as human populations and urban zones have increased in size, and this trend is expected to continue. The combined effects of ozone and N deposition result in profound changes in plant physiological function, nutrient cycling, C storage, fuel accumulation, and susceptibility to insect attack. Predicting future ecosystem condition under scenarios of increasing CO2 and temperature and altered precipitation patterns presents a complex research problem, particularly for areas also exposed to ozone and N deposition. Research approaches including controlled studies, manipulative field experiments, simulation modeling, and a consideration of disturbances such as pests, introduced species, fire, and drought are needed. Combined biogeography-biogeochemistry simulation models (also known as dynamic general vegetation models) incorporating all of these interacting factors will be needed to advance our understanding of these complex interactions.

Keywords: monitoring, assessment, sustainability, Western Hemisphere, sustainable management, ecosystem resources, nitrogen, climate change, forests

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Fenn, M. E. 2006. The Effects of Nitrogen Deposition, Ambient Ozone, and Climate Change on Forests in the Western U.S. In: Aguirre-Bravo, C.; Pellicane, Patrick J.; Burns, Denver P.; and Draggan, Sidney, Eds. 2006. Monitoring Science and Technology Symposium: Unifying Knowledge for Sustainability in the Western Hemisphere Proceedings RMRS-P-42CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 2-8

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.