Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (190 KB bytes)

Title: Modeling risk for SOD nationwide: what are the effects of model choice on risk prediction?

Author: Kelly, M.; Shaari, D.; Guo, Q.; Liu, D.;

Date: 2006

Source: In: Frankel, Susan J.; Shea, Patrick J.; and Haverty, Michael I., tech. coords. Proceedings of the sudden oak death second science symposium: the state of our knowledge. Gen. Tech. Rep. PSW-GTR-196. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 333-344

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: Phytophthora ramorum has the potential to infect many forest types found throughout the United States. Efforts to model the potential habitat for P. ramorum and sudden oak death (SOD) are important for disease regulation and management. Yet, spatial models using identical data can have differing results. In this paper we examine the results from five types of models generated from common input parameters, and investigate model agreement for distribution of risk for P. ramorum. We examine five models: (1) Rule-based, (2) Logistic regression, (3) Classification and Regression Trees, (4) Genetic Algorithm modeling, and (5) Support Vector Machines. The models differed in terms of parametric and non-parametric requirements, necessity for presence/absence data, and whether or not the explanatory variables were determined a priori or revealed during the model process. Nationwide input data included vegetation/host (hardwood diversity and hardwood density), topography, and climate (e.g. precipitation, frost days, temperature, and many other layers). We developed a risk map for the conterminous United States in which probabilities for P. ramorum disease establishment were based not on one model, but on agreement between multiple models. The five models were consistent in their prediction of some SOD risk in coastal CA, OR and WA. All models predicted some risk in the northern foothills of the Sierra Nevada mountains in CA. Outside of the west coast, the combined models predicted highest risk for SOD in a east-west oriented band including eastern OK, central AR, TN, KY, northern MI, AL, GA and SC, parts of central NC, and eastern VA, DL and MD. The paper also discusses issues of input data accuracy, coverage, availability of nationwide host datasets, data scale, and model computational requirements. Although theoretical in nature, the results of this paper have practical and applied value for managers and regulators of this disease.

Keywords: geographic information systems, spatial modeling, sudden oak death

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kelly, M.; Shaari, D.; Guo, Q.; Liu, D. 2006. Modeling risk for SOD nationwide: what are the effects of model choice on risk prediction?. In: Frankel, Susan J.; Shea, Patrick J.; and Haverty, Michael I., tech. coords. Proceedings of the sudden oak death second science symposium: the state of our knowledge. Gen. Tech. Rep. PSW-GTR-196. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 333-344

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.