Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (553 KB bytes)

Title: High-speed high-stress ring shear tests on granular sods and clayey soils

Author: Fukuoka, Hiroshi; Sassa, Kyoji;

Date: 1991

Source: In: Rice, Raymond M., technical coordinator. 1991. Proceedings of the IUFRO technical session on geomorphic hazards in managed forests; 5-11 August 1990; Montreal, Canada. Gen. Tech. Rep. PSW-GTR-130, Berkeley, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; p. 33-41

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: The purposes of this study is to obtain exact knowledge of the influences on friction angle during shear by shearing speeds. Ring shear tests on sandy and clayey materials have been carried out with a newly developed High-speed High-Stress Ring Shear Apparatus to examine if there are some changes in the frictional behaviors of these materials at high shearing speeds of O.O1cm/sec-100cm/sec and high normal stress of 0-3.8kgf/cm2. Samples used for tests were glass beads, tennis court sands in the university campus, the Toyoura standard sands (uniform beach sands) and bentonite clays. All tested samples were dry.

Although result on the glass beads showed that the friction angle during shear was independent of shear speed under the normal stress up to 3.8kgf/cm2, 2 ~ 5 degrees of change in friction angle were observed on the tennis court sands, the Toyoura standard sands and the bentonite clays. In the tests on the Toyoura standard sands and the bentonite clays, friction angle increased as the shear speed increased. On the contrary, friction angle during shear of the tennis court sands decreased at a shearing speed of 100cm/sec.

Change in grain size distribution implies that heavy crushing or grinding of particles occurred during shear. The grain size distribution become wider during shear by grain crushing in samples except glass beads. It could result in the increase of density and accordingly increase of the friction angle. Crushing or grinding of grains during shear can change the shape of grains. The Toyoura standard sands have round shape, because they are beach sands, it may become angular by crushing during shear. On the contrary, the tennis court sands have angular shape because they are taken from mountain slopes, it may become round by grinding during shear. Round grains have a small friction angle. It may be interpreted that the tennis court sands had a smaller friction angle during shear because of the change of angular grains to round grains by grindings. Hence, it can be said that the friction angle is affected by crushing or grinding of grains during shear, which appears in a higher normal stress and a greater shear speed (shear distance).

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Fukuoka, Hiroshi; Sassa, Kyoji 1991. High-speed high-stress ring shear tests on granular sods and clayey soils. In: Rice, Raymond M., technical coordinator. 1991. Proceedings of the IUFRO technical session on geomorphic hazards in managed forests; 5-11 August 1990; Montreal, Canada. Gen. Tech. Rep. PSW-GTR-130, Berkeley, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; p. 33-41

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.