Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (580 KB)

Title: Model-assisted estimation of forest resources with generalized additive models

Author: Opsomer, Jean D.; Breidt, F. Jay; Moisen, Gretchen G.; Kauermann, Goran;

Date: 2007

Source: Journal of the American Statistical Association. 102: 400-416.

Publication Series: Scientific Journal (JRNL)

Description: Multiphase surveys are often conducted in forest inventories, with the goal of estimating forested area and tree characteristics over large regions. This article describes how design-based estimation of such quantities, based on information gathered during ground visits of sampled plots, can be made more precise by incorporating auxiliary information available from remote sensing. The relationship between the ground visit measurements and the remote sensing variables is modeled using generalized additive models. Nonparametric estimators for these models are discussed and applied to forest data collected in the mountains of northern Utah. Model-assisted estimators that use the nonparametric regression fits are proposed for these data. The design context of this study is two-phase systematic sampling from a spatial continuum, under which properties of model-assisted estimators are derived. Difficulties with the standard variance estimation approach, which assumes simple random sampling in each phase, are described. An alternative assessment of estimator performance based on a synthetic population is implemented and shows that using the model predictions in a model-assisted survey estimation procedure results in substantial efficiency improvements over current estimation approaches.

Keywords: calibration, multiphase survey estimation, nonparametric regression, systematic sampling, variance estimation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Opsomer, Jean D.; Breidt, F. Jay; Moisen, Gretchen G.; Kauermann, Goran 2007. Model-assisted estimation of forest resources with generalized additive models. Journal of the American Statistical Association. 102: 400-416.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.