Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.5 MB bytes)

Title: Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies

Author: Leduc, Daniel J.; Matney, Thomas G.; Belli, Keith L.; Baldwin, V. Clark Jr.;

Date: 2001

Source: Res. Pap. SRS-25.Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 24p.

Publication Series: Research Paper (RP)

Description: Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software and fitting algorithms become available, they may be used to solve a wide variety of problems-particularly problems where the underlying relationship between predicted and predictors is unknown. We benchmark tested an aitemative to the traditional Weibull probability distribution function, diameter-at-breast-height moment, and direct parameter prediction models for approximating stand-diameter distributions. Using a feedforward backpropagation network, we demonstrated that NN are a somewhat better option. Unlike Weibull approximations, NN solutions cannot easily be mathematically constrained to match known reality constraints, but this difficulty is easy to overcome in practice.

Keywords: Connectionist models, parallel distributed processing systems, parameter recovery, Weibull distribution

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Leduc, Daniel J.; Matney, Thomas G.; Belli, Keith L.; Baldwin, V. Clark, Jr. 2001. Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies. Res. Pap. SRS-25.Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 24p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.