Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (90 KB bytes)

Title: Modeling Coast Redwood Variable Retention Management Regimes

Author: Berrill, John-Pascal; O'Hara, Kevin;

Date: 2007

Source: In: Standiford, Richard B.; Giusti, Gregory A.; Valachovic, Yana; Zielinski, William J.; Furniss, Michael J., technical editors. 2007. Proceedings of the redwood region forest science symposium: What does the future hold? Gen. Tech. Rep. PSW-GTR-194. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; p. 261-270

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: Variable retention is a flexible silvicultural system that provides forest managers with an alternative to clearcutting. While much of the standing volume is removed in one harvesting operation, residual stems are retained to provide structural complexity and wildlife habitat functions, or to accrue volume before removal during subsequent stand entries. The residual overstory trees and the new understory cohort will have different growth rates, and should therefore be modeled as distinct stand components. We used the redwood MASAM (multiaged stocking assessment model) to predict the growth of overstory and understory cohorts within pure coast redwood (Sequoia sempervirens) stands managed under dispersed variable retention management regimes. A range of overstory densities were simulated, and compared with an even-aged stand in terms of stand growth, and the growth and yield of each stand component. Results showed that overstory density had a minor influence on stand volume production, and a major influence on volume increment within overstory and understory cohorts. As overstory density increased, less growing space was available to the understory cohort. Too few data were available to model a combination of redwood and Douglas-fir. The redwood MASAM does not consider the spatial arrangement of stems, preventing comparison of aggregated and dispersed variable retention.

Keywords: coast redwood, growth and yield, leaf area, variable retention

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Berrill, John-Pascal; O''Hara, Kevin 2007. Modeling Coast Redwood Variable Retention Management Regimes. In: Standiford, Richard B.; Giusti, Gregory A.; Valachovic, Yana; Zielinski, William J.; Furniss, Michael J., technical editors. 2007. Proceedings of the redwood region forest science symposium: What does the future hold? Gen. Tech. Rep. PSW-GTR-194. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; p. 261-270

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.