Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (293 KB bytes)

Title: Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose

Author: Ni, Haiying; Laplaza, Jose M.; Jeffries, Thomas W.;

Date: 2007

Source: Applied and environmental microbiology. Vol. 73, no. 7 (Apr. 2007): Pages 2061-2066.

Publication Series: Miscellaneous Publication

Description: Saccharomyces cerevisiae L2612 transformed with genes for xylose reductase and xylitol dehydrogenase (XYL1 and XYL2) grows well on glucose but very poorly on D-xylose. When a gene for D-xylulokinase (XYL3 or XKS1) is overexpressed, growth on glucose is unaffected, but growth on xylose is blocked. Spontaneous or chemically induced mutants of this engineered yeast that would grow on xylose could, however, be obtained. We therefore used insertional transposon mutagenesis to identify two loci that can relieve this xylose-specific growth inhibition. One is within the open reading frame (ORF) of PHO13, and the other is approximately 500 bp upstream from the TAL1 ORF. Deletion of PHO13 or overexpression of TAL1 resulted in a phenotype similar to the insertional mutation events. Quantitative PCR showed that deletion of PHO13 increased transcripts for TAL1, indicating that the growth inhibition imposed by the overexpression of XYL3 on xylose can be relieved by an overexpression of transcripts for downstream enzymes. These results may be useful in constructing better xylose-fermenting S. cerevisiae strains.

Keywords: Growth regulators, gene expression, wood-decaying fungi, microbial metabolism, regulation, alcohol, Saccharomyces cerevisiae, genetic engineering, yeast, genetics, fungi, industrial applications, fermentation, lignocellulose, biodegradation, transposons, mutagenesis, D-xylose, xylotol dehydrogenase, enzymes, biotechnology, xylose reductase, decay fungi, yeast fungi

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ni, Haiying; Laplaza, Jose M.; Jeffries, Thomas W. 2007. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Applied and environmental microbiology. Vol. 73, no. 7 (Apr. 2007): Pages 2061-2066.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.