Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.07 MB bytes)

Title: Scale of association: hierarchical linear models and the measurement of ecological systems

Author: McMahon, Sean M.; Diez, Jeffrey M.;

Date: 2007

Source: Ecology letters, Vol. 10: 1-16

Publication Series: Miscellaneous Publication

Description: A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured data. Although hierarchical models have occasionally been used in the analysis of ecological data, their full potential to describe scales of association, diagnose variance explained, and to partition uncertainty has not been employed. In this paper we argue that the use of the HLM framework can enable significantly improved inference about ecological processes across levels of organization. After briefly describing the principals behind HLM, we give two examples that demonstrate a protocol for building hierarchical models and answering questions about the relationships between variables at multiple scales. The first example employs maximum likelihood methods to construct a two-level linear model predicting herbivore damage to a perennial plant at the individual- and patch-scale; the second example uses Bayesian estimation techniques to develop a three-level logistic model of plant flowering probability across individual plants, microsites and populations. HLM model development and diagnostics illustrate the importance of incorporating scale when modelling associations in ecological systems and offer a sophisticated yet accessible method for studies of populations, communities and ecosystems. We suggest that a greater coupling of hierarchical study designs and hierarchical analysis will yield significant insights on how ecological processes operate across scales.

Keywords: bayesian statistics, hierarchical linear models, inference, maximum liklihood, multilevel models, regression, scale, variance components

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


McMahon, Sean M.; Diez, Jeffrey M. 2007. Scale of association: hierarchical linear models and the measurement of ecological systems. Ecology letters, Vol. 10: 1-16

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.