Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (219 KB bytes)

Title: Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration

Author: Maier, Chris A.; Palmroth, Sari; Ward, Eric;

Date: 2008

Source: Tree Physiology, Vol. 28: 597-606

Publication Series: Miscellaneous Publication

Description: We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in ~20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO2]) for 9 years. Duke Forest free-air CO2 enrichment (FACE) plots were split and half of each ring fertilized with 112 kg ha–1 elemental N applied in two applications in March and April 2005. Measurements of needle length (L), mass per unit area (LMA), N concentration (Nl) on a mass and an area basis, light-saturated net photosynthesis per unit leaf area (Aa) and per unit mass (A>sub>m), and leaf conductance (gL) began after the second fertilizer application in existing 1-year-old foliage (FO) and later in developing current-year first-flush (FC1) and current-year second- flush (FC2) foliage. Elevated [CO2] increased Aa by 43 and 52% in FO and FC1 foliage, respectively, but generally had no significant effect on any other parameter. Fertilization had little or no significant effect on L, LMA, A or gL in FO foliage; although Nl was significantly higher in fertilized trees by midsummer. In contrast, fertilization resulted in large increases in L, Nl, and A in FC1 and FC2 foliage, increasing a by about 20%. These results suggest that, although both needle age classes accumulate N following fertilization, they use it differently— current-year foliage incorporates N into photosynthetic machinery, whereas 1-year-old foliage serves as an N store. There were no significant interaction effects of elevated [CO2] and fertilization on A. Elevated [CO2] increased the intercept of the A:Nl relationship but did not significantly affect the slope of the relationship in either foliage age class.

Keywords: FACE, global change, Jmax, nitrogen availability, photosynthetic capacity, Pinus taeda, stomatal conductance, Vcmax

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Maier, Chris A.; Palmroth, Sari; Ward, Eric 2008. Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration. Tree Physiology, Vol. 28: 597-606

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.