Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (233 KB bytes)

Title: An alternative to traditional goodness-of-fit tests for discretely measured continuous data

Author: Randolph, KaDonna C.; Seaver, Bill;

Date: 2007

Source: Forest Science, Vol. 53(5): 590-599

Publication Series: Miscellaneous Publication

Description: Traditional goodness-of-fit tests such as the Kolmogorov-Smirnov and x2 tests are easily applied to data of the continuous or discrete type, respectively. Occasionally, however, the case arises when continuous data are recorded into discrete categories due to an imprecise measurement system. In this instance, the traditional goodness-of-fit tests may not be wholly applicable because of an unmanageable number of ties in the data, sparse contingency tables, or both; therefore, a flexible alternative to goodness-of-fit tests for discretely measured continuous data is presented. The proposed methodology bootstraps confidence intervals for the difference between selected percentiles of the empirical distribution functions of two samples. Application of the approach is illustrated with a comparison of loblolly pine (Pinus taeda L.) tree crown density distributions at the 10th, 25th, 50th, 75th, and 90th percentiles simultaneously.

Keywords: bootstrapping, crown density, empirical distribution function, percentiles

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Randolph, KaDonna C.; Seaver, Bill 2007. An alternative to traditional goodness-of-fit tests for discretely measured continuous data. Forest Science, Vol. 53(5): 590-599

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.