Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (766 KB bytes)

Title: Fertilization effects on forest carbon storage and exchange, and net primary production: a new hybrid process model for stand management

Author: Sampson, D.A.; Waring, R.H.; Maier, C.A.; Gough, C.M.; Ducey, M.J.; Kohnsen, K.H.;

Date: 2006

Source: Forest Ecology and Management, Vol. 221: 91-109

Publication Series: Miscellaneous Publication

Description: A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H2O and CO2 fluxes, canopy leaf area index (L), and annual estimates of tree growth and dimension. Herein, we focus on two decades of loblolly pine (Pinus taeda L.) growth and establishment for stands growing on a nutrient poor, droughty soil (SETRES; Southeast Tree Research and Education Site) in North Carolina, USA, on a site previously occupied by a 30-year-old natural long-leaf pine (P. palustris Mill.) stand. The SECRETS-3PG model combines: (1) a detailed canopy process model with hourly and daily resolution, (2) a biometrically accurate tree and stand growth module for monthly allocation, 3-PG, and (3) empirical models of soil CO2 efflux (RS). Simulated L, quadratic mean tree diameter, and total standing biomass all tracked field measurements over a 10-year period. Simulated maintenance respiration, canopy transpiration, and RS mirrored, with minor exceptions, short-term independently acquired data. Model correspondence with the independent measurements provided a basis for making short-term estimates of net ecosystem productivity (NEP) and longer-term estimates of net primary production (NPP) over the 20-year period from planting. Simulations suggest that optimum fertilization amendments; (1) increased NEP by more than 10-fold over control – FW(952 g C m-2 a-1) and CW(71 g C m-2 a-1) – at maximum NPP and (2) increased NPP two-fold (1334 and 669 g C m-2 a-1 for FWand CW, respectively) at maximum L. Seasonal patterns in NEP suggest that autumn and winter may be critical periods for C uptake in nutrient-limited loblolly pine stands. We conclude that increased L in response to improved nutrition may enable loblolly pine to achieve positive annual NEP earlier in rotation.

Keywords: net ecosystem productivity, Pinus taeda, LAI, loblolly pine, fertilization, stand development, process models

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Sampson, D.A.; Waring, R.H.; Maier, C.A.; Gough, C.M.; Ducey, M.J.; Kohnsen, K.H. 2006. Fertilization effects on forest carbon storage and exchange, and net primary production: a new hybrid process model for stand management. Forest Ecology and Management, Vol. 221: 91-109

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.