Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.95 MB bytes)

Title: Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forest.

Author: Temesgen, H.; Monleon, V.J.; Hann, D.W.;

Date: 2008

Source: Canadian Journal of Forest Research. 38: 553-565

Publication Series: Scientific Journal (JRNL)

Description: Using an extensive Douglas-fir data set from southwest Oregon, we examined the (I) performance and suitability of selected prediction strategies, (2) contribution of relative position and stand-density measures in improving tree height (h) prediction values, and (3) effect of different subsampling designs to fill in missing h values in a new stand using a regional nonlinear model. Nonlinear mixed-effects models (NMEM) substantially improved the accuracy and precision of height prediction over the conventional nonlinear fixed-effects model (NFEM) that assumes the observations are independent, particularly when a few trees are subsampled for height. The predictive performance of a correction factor on a NFEM with relative position and stand-density measures was comparable to that of a NMEM when four or more trees were subsampled for height. When two or more heights were randomly subsampled, the NMEM efficiently explained the differences in the height4iameter relationship because of the variations in relative position of trees and stand density without having to incorporate them into the model. When only one height was subsampled, selecting the largest diameter tree in the stand would result in a lower predicted root mean square error (RMSE) than randomly selecting the height. regardless of the model form or fitting strategy used.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Temesgen, H.; Monleon, V.J.; Hann, D.W. 2008. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forest. Canadian Journal of Forest Research. 38: 553-565

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.