Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (545 K bytes)

Title: Why sampling scheme matters: the effect of sampling scheme on landscape genetic results

Author: Schwartz, Michael K.; McKelvey, Kevin S.;

Date: 2008

Source: Conservation Genetics. DOI 10.1007/s10592-008-9622-1

Publication Series: Miscellaneous Publication

Description: There has been a recent trend in genetic studies of wild populations where researchers have changed their sampling schemes from sampling pre-defined populations to sampling individuals uniformly across landscapes. This reflects the fact that many species under study are continuously distributed rather than clumped into obvious "populations". Once individual samples are collected, many landscape genetic studies use clustering algorithms and multilocus genetic data to group samples into subpopulations. After clusters are derived, landscape features that may be acting as barriers are examined and described. In theory, if populations were evenly sampled, this course of action should reliably identify population structure. However, genetic gradients and irregularly collected samples may impact the composition and location of clusters. We built genetic models where individual genotypes were either randomly distributed across a landscape or contained gradients created by neighbor mating for multiple generations. We investigated the influence of six different sampling protocols on population clustering using program STRUCTURE, the most commonly used model-based clustering method for multilocus genotype data. For models where individuals (and their alleles) were randomly distributed across a landscape, STRUCTURE correctly predicted that only one population was being sampled. However, when gradients created by neighbor mating existed, STRUCTURE detected multiple, but different numbers of clusters, depending on sampling protocols. We recommend testing for fine scale autocorrelation patterns prior to sample clustering, as the scale of the autocorrelation appears to influence the results. Further, we recommend that researchers pay attention to the impacts that sampling may have on subsequent population and landscape genetic results.

Keywords: landscape genetics, microsatellite, population structure, sample design, sampling

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Schwartz, Michael K.; McKelvey, Kevin S. 2009. Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conservation Genetics 10:441-452.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.