Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (470 KB)

Title: Discrete return lidar-based prediction of leaf area index in two conifer forests

Author: Jensen, Jennifer L. R.; Humes, Karen S.; Vierling, Lee A.; Hudak, Andrew T.;

Date: 2008

Source: Remote Sensing of the Environment. 112: 3947-3957.

Publication Series: Scientific Journal (JRNL)

Description: Leaf area index (LAI) is a key forest structural characteristic that serves as a primary control for exchanges of mass and energy within a vegetated ecosystem. Most previous attempts to estimate LAI from remotely sensed data have relied on empirical relationships between field-measured observations and various spectral vegetation indices (SVIs) derived from optical imagery or the inversion of canopy radiative transfer models. However, as biomass within an ecosystem increases, accurate LAI estimates are difficult to quantify. Here we use lidar data in conjunction with SPOT5-derived spectral vegetation indices (SVIs) to examine the extent to which integration of both lidar and spectral datasets can estimate specific LAI quantities over a broad range of conifer forest stands in the northern Rocky Mountains. Our results show that SPOT5-derived SVIs performed poorly across our study areas, explaining less than 50% of variation in observed LAI, while lidar-only models account for a significant amount of variation across the two study areas located in northern Idaho; the St. Joe Woodlands (R2=0.86; RMSE=0.76) and the Nez Perce Reservation (R2=0.69; RMSE=0.61). Further, we found that LAI models derived from lidar metrics were only incrementally improved with the inclusion of SPOT 5- derived SVIs; increases in R2 ranged from 0.02­0.04, though model RMSE values decreased for most models (0-11.76% decrease). Significant lidar-only models tended to utilize a common set of predictor variables such as canopy percentile heights and percentile height differences, percent canopy cover metrics, and covariates that described lidar height distributional parameters. All integrated lidar-SPOT 5 models included textural measures of the visible wavelengths (e.g. green and red reflectance). Due to the limited amount of LAI model improvement when adding SPOT 5 metrics to lidar data, we conclude that lidar data alone can provide superior estimates of LAI for our study areas.

Keywords: Lidar, Leaf area index (LAI), SPOT, integration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Jensen, Jennifer L. R.; Humes, Karen S.; Vierling, Lee A.; Hudak, Andrew T. 2008. Discrete return lidar-based prediction of leaf area index in two conifer forests. Remote Sensing of the Environment. 112: 3947-3957.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.