Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (196 KB bytes)

Title: Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption

Author: Eberhardt, Thomas L.; Min, Soo-Hong;

Date: 2008

Source: Bioresource Technology Vol. 99 Issue 3, 2008 626?630

Publication Series: Miscellaneous Publication

Description: Biomass-based adsorbents have been widely studied as a cost-effective and environmentally-benign means to remove pollutants and nutrients from water. A two-stage treatment of aspen wood particles with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a biosorbent that was effective in removing phosphate from test solutions. FTIR spectroscopy of the biosorbent samples showed a decrease in the intensity of the carboxylate signal coinciding with a decrease in particle size. Elemental analysis results showed the iron content of both the biosorbent samples, and wood particles treated with ferrous chloride alone, to also decrease with particle size. The relationship between iron content and particle size for the biosorbent samples appeared to be a function of both the amount of CMC?Fe complex and the effciency of removing free iron ions after treating. Sorption testing results showed a strong linear correlation between the phosphorous uptake capacities and the iron contents of the samples adjusted for losses of iron during testing. As anticipated, pretreating with the anionic polymer provided additional sites to complex iron and thereby imparted a greater phosphorous uptake capacity. Although the larger wood particles provided a greater amount of iron for phosphate removal, smaller wood particles may be preferred since they afforded the lowest release of iron relative to the amount of phosphate removed.

Keywords: Adsorption, Biomass, Biosorbent, Carboxymethyl cellulose, Phosphate

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Eberhardt, Thomas L.; Min, Soo-Hong 2008. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption. Bioresource Technology Vol. 99 Issue 3, 2008 626?630


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.