Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (119 KB bytes)

Title: Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans

Author: Klepzig, Kier D.; Adams, A.S.; Handelsman, J; Raffa, K.F.;

Date: 2009

Source: Environ. Entomol. 38(1): 67-77

Publication Series: Miscellaneous Publication

Description: Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological, evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host (macrosymbiont), such as direct or indirect nutrition, ability to counter the defenses of plant or animal hosts, protection from natural enemies, improved development and reproduction, and communication. Benefits to the microsymbiont (including a broad range of fungi, bacteria, mites, nematodes, etc.) often include transport, protection from antagonists, and protection from environmental extremes. Symbiotic relationships may be mutualistic, commensal, competitive, or parasitic. In many cases, individual relationships may include both beneficial and detrimental effects to each partner during various phases of their life histories or as environmental conditions change. The outcomes of insect-microbial interactions are often strongly mediated by other symbionts and by features of the external and internal environment. These outcomes can also have important effects on human well being and environmental quality, by affecting agriculture, human health, natural resources, and the impacts of invasive species. We argue that, for many systems, our understanding of symbiotic relationships will advance most rapidly where context dependency and multipartite membership are integrated into existing conceptual frameworks. Furthermore, the contribution of entomological studies to overall symbiosis theory will be greatest where preoccupation with strict definitions and artificial boundaries is minimized, and integration of emerging molecular and quantitative techniques is maximized. We highlight symbiotic relations involving bark beetles to illustrate examples of the above trends.

Keywords: symbiosis, insects, microorganisms, bark beetles, context dependency

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Klepzig, Kier, D.; Adams, A.S.; Handelsman, J; Raffa, K.F. 2009. Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ. Entomol. 38(1): 67-77

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.