Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (755 KB bytes)

Title: Landscape patterns from mathematical morphology on maps with contagion

Author: Riitters, Kurt; Vogt, Peter; Soille, Pierre; Estreguil, Christine;

Date: 2009

Source: Landscape Ecol, Vol. 24: 699-709

Publication Series: Miscellaneous Publication

Description: The perceived realism of simulated maps with contagion (spatial autocorrelation) has led to their use for comparing landscape pattern metrics and as habitat maps for modeling organism movement across landscapes. The objective of this study was to conduct a neutral model analysis of pattern metrics defined by morphological spatial pattern analysis (MSPA) on maps with contagion, with comparisons to phase transitions (abrupt changes) of patterns on simple random maps. Using MSPA, each focal class pixel on a neutral map was assigned to one of six pattern classes—core, edge, perforated, connector, branch, or islet—depending on MSPA rules for connectivity and edge width. As the density of the focal class (P) was increased on simple random maps, the proportions of pixels in different pattern classes exhibited two types of phase transitions at threshold densities (0.41 < P < 0.99) that were predicted by percolation theory after taking into account the MSPA rules for connectivity and edge width. While there was no evidence of phase transitions on maps with contagion, the general trends of pattern metrics in relation to P were similar to simple random maps. Using an index P for comparisons, the effect of increasing contagion was opposite that of increasing edge width.

Keywords: pattern analysis, neutral model, percolation theory, phase transition, simulation, threshold

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)



Riitters, Kurt; Vogt, Peter; Soille, Pierre; Estreguil, Christine 2009. Landscape patterns from mathematical morphology on maps with contagion. Landscape Ecol, Vol. 24: 699-709


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.