Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB byte)

Title: Probability based models for estimation of wildfire risk

Author: Preisler, Haiganoush; Brillinger, D. R.; Burgan, R. E.; Benoit, John;

Date: 2004

Source: International Journal of Wildland Fire. 13(2): 133-142

Publication Series: Scientific Journal (JRNL)

Description: We present a probability-based model for estimating fire risk. Risk is defined using three probabilities: the probability of fire occurrence; the conditional probability of a large fire given ignition; and the unconditional probability of a large fire. The model is based on grouped data at the 1 km²-day cell level. We fit a spatially and temporally explicit non-parametric logistic regression to the grouped data. The probability framework is particularly useful for assessing the utility of explanatory variables, such as fire weather and danger indices for predicting fire risk. The model may also be used to produce maps of predicted probabilities and to estimate the total number of expected fires, or large fires, in a given region and time period. As an example we use historic data from the State of Oregon to study the significance and the forms of relationships between some of the commonly used weather and danger variables on the probabilities of fire. We also produce maps of predicted probabilities for the State of Oregon. Graphs of monthly total numbers of fires are also produced for a small region in Oregon, as an example, and expected numbers are compared to actual numbers of fires for the period 1989–1996. The fits appear to be reasonable; however, the standard errors are large indicating the need for additional weather or topographic variables.

Keywords: fire danger indices, fire occurrence probabilities, fire weather, forest fires, non-parametric regression, Oregon, spatial–temporal model

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Preisler, H. K.; Brillinger, D. R.; Burgan, R. E.; Benoit, J. W. 2004. Probability based models for estimation of wildfire risk. International Journal of Wildland Fire. 13(2): 133-142


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.