Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.4 MB bytes)

Title: Trajectory-based change detection for automated characterization of forest disturbance dynamics

Author: Kennedy, Robert E.; Cohen, Warren B.; Schroeder, Todd A.;

Date: 2007

Source: Remote Sensing of Environment. 110: 370-386

Publication Series: Scientific Journal (JRNL)

Description: Satellite sensors are well suited to monitoring changes on the Earth's surface through provision of consistent and repeatable measurements at a spatial scale appropriate for many processes causing change on the land surface. Here, we describe and test a new conceptual approach to change detection of forests using a dense temporal stack of Landsat Thematic Mapper (TM) imagery. The central premise of the method is the recognition that many phenomena associated with changes in land cover have distinctive temporal progressions both before and after the change event, and that these lead to characteristic temporal signatures in spectral space. Rather than search for single change events between two dates of imagery, we instead search for these idealized signatures in the entire temporal trajectory of spectral values. This trajectory-based change detection is automated, requires no screening of nonforest area, and requires no metric-specific threshold development. Moreover, the method simultaneously provides estimates of discontinuous phenomena (disturbance date and intensity) as well as continuous phenomena (postdisturbance regeneration). We applied the method to a stack of 18 Landsat TM images for the 20-year period from 1984 to 2004. When compared with direct interpreter delineation of disturbance events, the automated method accurately labeled year of disturbance with 90 percent overall accuracy in clearcuts and with 77 percent accuracy in partial cuts (thinnings). The primary source of error in the method was misregistration of images in the stack, suggesting that higher accuracies are possible with better registration.

Keywords: Change detection, Landsat, forest, clearcut, partial cut, curve-fitting, Oregon

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kennedy, Robert E.; Cohen, Warren B.; Schroeder, Todd A. 2007. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment. 110: 370-386

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.