Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (388 KB)

Title: Effects of season and scale on response of elk and mule deer to habitat manipulation

Author: Long, Ryan A.; Rachlow, Janet L.; Kie, John G.;

Date: 2008

Source: Journal of Wildlife Management. 72(5): 1133-1142

Publication Series: Scientific Journal (JRNL)

Description: Manipulation of forest habitat via mechanical thinning or prescribed fire has become increasingly common across western North America. Nevertheless, empirical research on effects of those activities on wildlife is limited, although prescribed fire in particular often is assumed to benefit large herbivores. We evaluated effects of season and spatial scale on response of Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) to experimental habitat manipulation at the Starkey Experimental Forest and Range in northeastern Oregon, USA. From 2001 to 2003, 26 densely stocked stands of true fir (Abies spp.) and Douglas-fir (Pseudotsuga menziesii) were thinned and burned and 27 similar stands were left untreated to serve as experimental controls. We used location data for elk and mule deer collected during spring (1 Apr-14 Jun) and summer (15 Jun-31 Aug) of 1999-2006 to compare use of treated and untreated stands and to model effects of environmental covariates on use of treated stands. In spring, elk selected burned stands and avoided control stands within the study area (second-order selection; large scale). Within home ranges (third-order selection; small scale), however, elk did not exhibit selection. In addition, selection of treatment stands by elk in spring was not strongly related to environmental covariates. Conversely, in summer elk selected control stands and either avoided or used burned stands proportional to their availability at the large scale; patterns of space use within home ranges were similar to those observed in spring. Use of treatment stands by elk in summer was related to topography, proximity to roads, stand size and shape, and presence of cattle, and a model of stand use explained 50 percent of variation in selection ratios. Patterns of stand use by mule deer did not change following habitat manipulation, and mule deer avoided or used all stand types proportional to their availability across seasons and scales. In systems similar to Starkey, manipulating forest habitat with prescribed fire might be of greater benefit to elk than mule deer where these species are sympatric, and thus maintaining a mixture of burned and unburned (late-successional) habitat might provide better long-term foraging opportunities for both species than would burning a large proportion of a landscape.

Keywords: Cervus elaphus, fuels reduction, manipulative experiment, Odocileus hemionus, Oregon, utilization distribution

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Long, Ryan A.; Rachlow, Janet L.; Kie, John G. 2007. Effects of season and scale on response of elk and mule deer to habitat manipulation. Journal of Wildlife Management. 72(5): 1133-1142

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.